# About BELECTRIC

## Our core capabilities

PV System Design Analysis

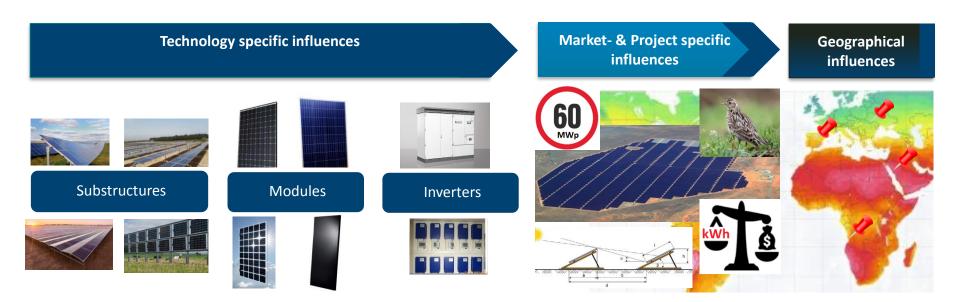
Engineering, procurement & construction (EPC)

Operation & Maintenance (O&M)

1st EPC company Worldwide with an installed capacity of > 1 GW

> 480 realized PV Power plants

> **4.2 GW** installed capacity


> **1,7 GW** in O&M

Since **2001**pioneer in utility scale solar

Since **12/2021**Member of
Elevion Group



## COMPLEXITY OF SYSTEM DESIGN OPTIMIZATION – HOW TO DECIDE?



#### Key takeaway:

modelling and simulation is crucial to cope with complexity of system design optimization and holistic evaluation of components

## PV TECHNOLOGY ANNOUNCEMENTS VS. PV PROJECTS REALITY



TÜV NORD (Hangzhou) Co., Ltd.

Room 217, Building 17, No.57, Kejiyuan Road, Baiyang Street HEDA, Hangzhou, Zhejiang Province, China, 310019

#### LCOE Evaluation Report No. TRHZHZPVS11003/21TC/03

#### Table 2-3-2 Total Investment of Lorca Project

| Module type              | 182-78N-610W | 210-66-665W |
|--------------------------|--------------|-------------|
| Total Project Investment | \$0.7507     | \$0.7604    |
| 1 Development Cost       | \$0.1095     | \$0.1095    |
| 2 Total EPC cost         | \$0.6412     | \$0.6509    |
| 2.1 Design Fee           | \$0.0156     | \$0.0156    |
| 2.2 Module cost          | \$0.3000     | \$0.3000    |
| 2.3 BOS cost             | \$0.3183     | \$0.3271    |

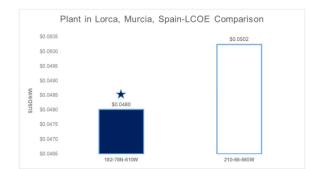
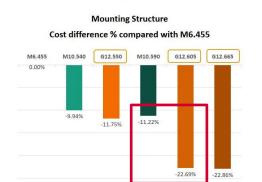




Figure 3-2-2 Comparison of LCOE of Lorca Project

## CAPEX & LCOE Results CAPEX break-down in Germany



#### G12 modules

- Longer string and longer table
- → Less amount of table

Landscape G12 + wider modules (G12.605, 665)

- Length instead of width dominates the table cost
- Higher Wp / m
- → Significantly lower € / Wp

13 © Fraunhofer ISE FHG-SK: ISE-INTERNAL



### pv magazine

Single-axis bifacial PV offers lowest LCOE in 93.1% of world's land area

#### Key takeaway:

Often misleading information in publications require proper consultancy or internal analytical capabilities

## KEY PRINCIPLES OF SYSTEM DESIGN OPTIMIZATION AT BELECTRIC

#### > HIGH VOLUMES

- Analysis of all relevant system design scenarios via modelling & simulation approach



#### > APPLE TO APPLE

- Comparing optimized vs. optimized only
- Pan file sanity check before use...



#### > UP TO DATE

- Consideration of new technologies and up to date cost data / forecasts



#### > KPI DRIVEN

- Use of economic KPIs instead of LCoE



#### > HOLISTIC

- Continuous collection and consideration of relevant cost inputs CAPEX and OPEX (incl. installation, transportation, O&M, EBoS..)



#### > RELIABLE

- Interfaces with state of the art software like PV syst and PV case
- Regular model validation





## SYSTEM DESIGN OPTIMIZATION: LCOE VS. NPV

## **CASE STUDY**

Country Germany Geographical Site

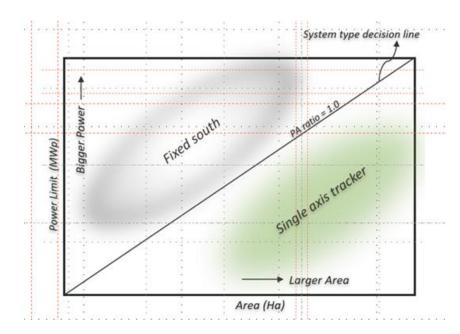
No. of Simulations (6) 12,138

**Discount Rate** 

Tariff assumption (€cent/kWh)

3% / 5%

| System Designs | LCoE Ranking | Deviation Analysi |
|----------------|--------------|-------------------|

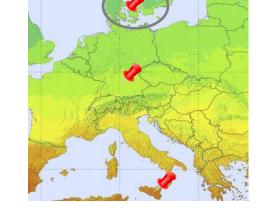

| No | Substructure                         | Module                   | Inverter<br>System   | Row<br>Distance<br>(m) | DC/AC<br>Ratio | LCoE<br>(€cent/kWh) | CapEx<br>deviation<br>(€) | OpEx<br>deviation<br>(€) | Nominal<br>Power<br>(kWp) | AC<br>Power<br>(kVA) | Specific Yield<br>(kWh/kWp/a) | Sale of<br>electricity<br>deviation (€) | NPV<br>deviation<br>(€) |
|----|--------------------------------------|--------------------------|----------------------|------------------------|----------------|---------------------|---------------------------|--------------------------|---------------------------|----------------------|-------------------------------|-----------------------------------------|-------------------------|
| 1  | SAT, 1P, HbG15m, bifacial            | YL540DF-72e0.5-182_jaing | 90250HX <u>b</u> ifi | 5                      | 115            | 3.534               | 0€                        | 0€                       | 19,703                    | 17,133               | 1,364                         | 0€                                      | <u>0€</u>               |
| 2  | FIXSouth, 3P, 20°, HbG0.7m, bifacial | YL540DF-72e0.5-182_jaing | SC250HX <u>b</u> ifi | 6                      | 12             | 3.547               |                           |                          | 34,501                    | 28,751               | 1,143                         | 10,817,590€                             | 3,638,393€              |
| 3  | FIXSouth, 3P, 25°, HbG0.7m, bifacial | YL540DF-72e0.5-182_jaing | 93250HX <u>b</u> ifi | 6                      | 12             | 3.547               |                           |                          | 35,149                    | 29,291               | 1,146                         | 11,577,878€                             | 3,925,245€              |

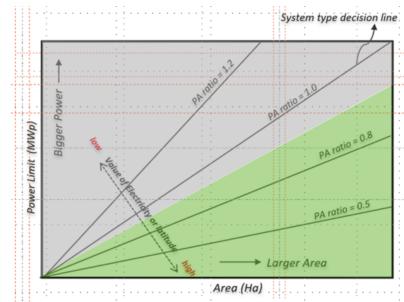
#### Key takeaways:

- > Depending on the selected KPI (NPV, LCoE..) the overall ranking will be significantly different
- $\triangleright$  System Design decisions have a major impact on the business case  $\rightarrow$  manifold options to tailor the business case
- > LCoE is in most cases not the right KPI for System Design optimization as it is a cost-based figure not considering the revenues

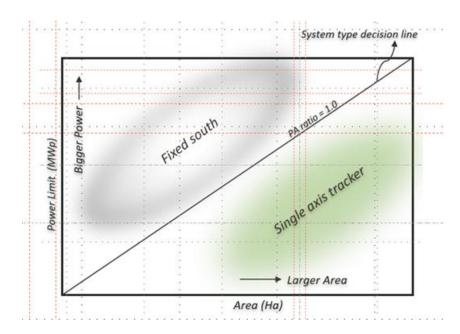


## POWER TO AREA DIAGRAM BASED ON NPV RANKING





\* Schematic diagram based on parametrization of power limits for a 10 ha plot at representative locations across Europe. Beside power limit and location all other parameters kept constant

\* PA: Power to area

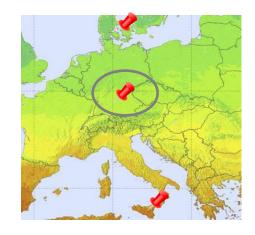


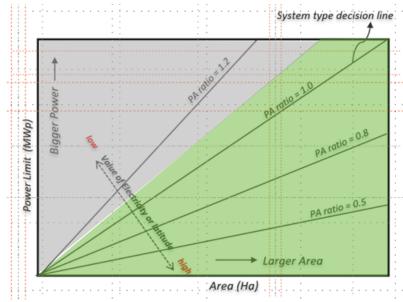




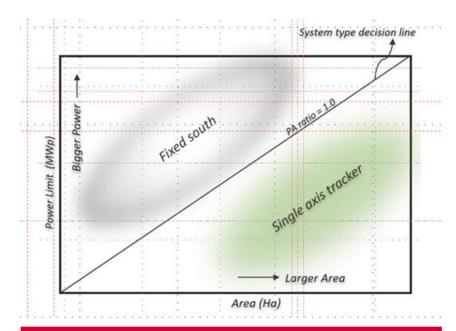



## POWER TO AREA DIAGRAM BASED ON NPV RANKING



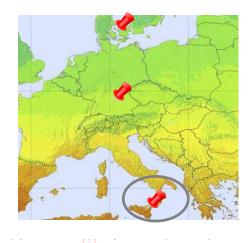


\* Schematic diagram based on parametrization of power limits for a 10 ha plot at representative locations across Europe. Beside power limit and location all other parameters kept constant

\* PA: Power to area

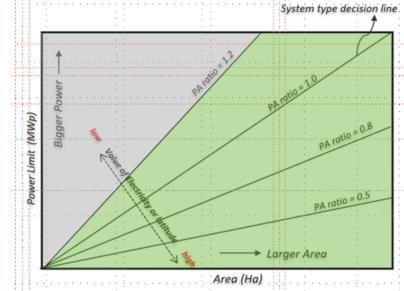







## POWER TO AREA DIAGRAM BASED ON NPV RANKING




#### Key takeaway:

Independently from geographic location / irradiation, the system design optimization (fixed tilt/tracker) depends strongly on the power to area ratio





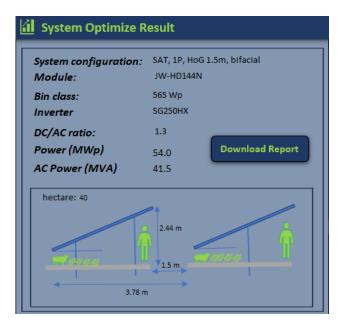




### BELECTRIC SERVICES BASED ON MODELLING AND SIMULATION CAPABILITIES.

- Business case tailored system designs including sensitivity analysis and robustness check
- Project porfolio analysis regarding standardization and bundling opportunities
- > PV Design Configurator LIVE DEMO "a simple solution for a complex matter"






## BELECTRIC SERVICES BASED ON MODELLING AND SIMULATION CAPABILITIES.

> PV Design Configurator – "a simple solution for a complex matter"







